Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 10(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38392794

RESUMO

BACKGROUND: Aspergillus fumigatus is an important concern for immunocompromised individuals, often resulting in severe infections. With the emergence of resistance to azoles, which has been the therapeutic choice for Aspergillus infections, monitoring the resistance of these microorganisms becomes important, including the search for mutations in the cyp51A gene, which is the gene responsible for the mechanism of action of azoles. We conducted a retrospective analysis covering 478 A. fumigatus isolates. METHODS: This comprehensive dataset comprised 415 clinical isolates and 63 isolates from hospital environmental sources. For clinical isolates, they were evaluated in two different periods, from 1998 to 2004 and 2014 to 2021; for environmental strains, one strain was isolated in 1998, and 62 isolates were evaluated in 2015. Our primary objectives were to assess the epidemiological antifungal susceptibility profile; trace the evolution of resistance to azoles, Amphotericin B (AMB), and echinocandins; and monitor cyp51A mutations in resistant strains. We utilized the broth microdilution assay for susceptibility testing, coupled with cyp51A gene sequencing and microsatellite genotyping to evaluate genetic variability among resistant strains. RESULTS: Our findings reveal a progressive increase in Minimum Inhibitory Concentrations (MICs) for azoles and AMB over time. Notably, a discernible trend in cyp51A gene mutations emerged in clinical isolates starting in 2014. Moreover, our study marks a significant discovery as we detected, for the first time, an A. fumigatus isolate carrying the recently identified TR46/F495I mutation within a sample obtained from a hospital environment. The observed cyp51A mutations underscore the ongoing necessity for surveillance, particularly as MICs for various antifungal classes continue to rise. CONCLUSIONS: By conducting resistance surveillance within our institution's culture collection, we successfully identified a novel TR46/F495I mutation in an isolate retrieved from the hospital environment which had been preserved since 1998. Moreover, clinical isolates were found to exhibit TR34/L98H/S297T/F495I mutations. In addition, we observed an increase in MIC patterns for Amphotericin B and azoles, signaling a change in the resistance pattern, emphasizing the urgent need for the development of new antifungal drugs. Our study highlights the importance of continued monitoring and research in understanding the evolving challenges in managing A. fumigatus infections.

2.
Med Mycol Case Rep ; 36: 5-9, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35242508

RESUMO

We present a case of a 55-year-old man with a heart transplant who acquired Invasive Aspergillosis by Aspergillus fumigatus with the focus in the kidney. During about two years of antifungal treatment, most of the time with voriconazole, it was possible to obtain nine isolates of A. fumigatus, with the same genotypic characteristics, but with an increase in MIC for several azoles. The two last isolates presented high MICs for Voriconazole (>8 µg/mL>). Sequencing of the CYP51A gene showed G448S amino acid substitution in the same two isolates. In long-term treatments with antifungals, it would be important to regularly evaluate the susceptibility of isolated strains, as resistance to azoles has been increasingly described around the world.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...